
MATH 521A: Abstract Algebra
Exam 2 Solutions

1. Determine, with proof, all zero divisors in Z34. How many are there?

For every integer x satisfying 1 ≤ x ≤ 16, we have [2x][17] = [34x] = [0]. However
none of the [2x] are [0], and neither is [17]; hence we have seventeen zero divisors.
There are no more, because Theorem 2.10 states that [x] is a unit in Z34 if and only if
gcd(x, 34) = 1. Hence all other elements are units (and not zero divisors), or [0] itself.

2. Find all solutions to the modular equation 50x ≡ 20 (mod 630).

We first apply our congruence theorem with a = 10; x a solution to our congruence if
and only if it is a solution to 5x ≡ 2 (mod 63). We now use the generalized Euclidean
algorithm to determine that (−25)5 + (2)63 = 1, so [−25][5] = [1] in Z63. Multiplying,
we get x ≡ (−25)5x ≡ (−25)2 = −50 (mod 63). Hence the unique solution mod 63
is x = −50, or x = 13. However the problem is mod 630, so there are ten solutions:
[13], [76], [139], [202], [265], [328], [391], [454], [517], [580].

3. For ring R and element x ∈ R, we say that x is silver if x+ x+ x = 0R. Define T ⊆ R
to be the set of silver elements of R. Prove that T is a subring of R.

(1) T is nonempty, since 0 + 0 + 0 = 0 + 0 = 0, so 0 ∈ T .
(2) Suppose x, y ∈ T . We calculate (x−y)+(x−y)+(x−y) = (x+x+x)−(y+y+y) =
0− 0 = 0, so x− y ∈ T , so T is closed under subtraction.
(3) Suppose again x, y ∈ T . We calculate xy+xy+xy = (x+x)y+xy = (x+x+x)y =
0y = 0, so xy ∈ T . Hence T is closed under multiplication.

4. Consider the function f : Z34 → Z2 × Z17 given by f : [x]34 7→ ([x]2, [x]17). Prove that
f is well-defined.

Suppose that [x]34 = [y]34, i.e. we have two names for the same element of the domain.
Then 34|(x − y), i.e. there is some k ∈ Z with 34k = x − y. We use this equation
twice: First, x− y = 34k = 2(17k), and 17k ∈ Z, so 2|(x− y). This means that x ≡ y
(mod 2) and so [x]2 = [y]2. Second, x − y = 17(2k), and 2k ∈ Z, so 17|(x − y). This
means that x ≡ y (mod 17) and so [x]17 = [y]17. Hence ([x]2, [x]17) = ([y]2, [y]17).

5. Let R have ground set Z and operations given by:

∀x, y ∈ Z, x⊕ y = x + y − 2, x� y = 2x + 2y − xy − 2.

Prove that R, with operations ⊕,�, is a commutative ring.

We must check all the axioms. (0) Since x+y−2, 2x+2y−xy−2 ∈ Z, R is closed under
both operations. (1) x⊕ y = x + y − 2 = y + x− 2 = y ⊕ x, so ⊕ is commutative. (2)
(x⊕y)⊕z = (x+y−2)⊕z = x+y−2+z−2 = x+y+z−2−2 = x+(y⊕z)−2 = x⊕(y⊕z),
so ⊕ is associative. (3) We have 0R = 2, as 2⊕y = 2 +y−2 = y, for all y ∈ R. (4) Let
y ∈ R. Note that y⊕(4−y) = y+(4−y)−2 = 2 = 0R, so −y = 4−y. (5) We calculate
(x�y)�z = (2x+2y−xy−2)�z = 4x+4y−2xy−4+2z−2xz−2yz+xyz+2z+2z−2 =



2x+4y+4z−2yz−4−2xy−2yz+xyz+2x−2 = x� (2y+2z−yz−2) = x� (y�z).
(commutative) We have x� y = 2x+ 2y−xy− 2 = 2y+ 2x− yx− 2 = y�x. This lets
us just prove one of the two distributive axioms: (6) x� (y ⊕ z) = x� (y + z − 2) =
2x + 2y + 2z − 4 − xy − xz + 2x − 2 = 2x + 2y − xy − 2 + 2x + 2z − xz − 2 − 2 =
(2x + 2y − xy − 2)⊕ (2x + 2z − xz − 2) = (x� y)⊕ (x� z).

6. Let R be a (not necessarily commutative) ring with identity and x, y ∈ R. Suppose
that neither x nor y is a zero divisor, and that xy is a unit. Prove that x is a unit.

Since xy is a unit, there is some u ∈ R with uxy = xyu = 1. We have x(yu) = 1, so yu
is a right inverse to x. We multiply uxy = 1 on the left by y to get yuxy = y1 = y = 1y.
Since y is not a zero divisor, we may cancel it on the right (by a theorem proved in
class), to get yux = 1 or (yu)x = 1. Hence yu is also a left inverse to x.

7. Let R be the ring of 2 × 2 upper triangular matrices with entries from Q, i.e. R =
{( a b

0 c ) : a, b, c ∈ Q}. Determine, with proof, all units and zero divisors of R.

Claim 1: If ac 6= 0 then the matrix is a unit. We have ( a b
0 c )

(
1/a −b/ac
0 1/c

)
= ( 1 0

0 1 ) = 1R.

Claim 2: If ac = 0 then the matrix is a zero divisor. We have ( a b
0 c ) ( c −b

0 a ) = ( 0 0
0 0 ) = 0R.

No element can be both a unit and a zero divisor (by a homework problem). Since the
two claims above cover all cases, no element can be neither.

8. Let R be the ring of 2 × 2 matrices with entries from Q. Define f : R → R via
f : ( a b

c d ) 7→ ( a c
b d ), a.k.a. the matrix transpose. Prove or disprove that f is a ring

isomorphism.

We calculate f
(

( a b
c d )

(
a′ b′

c′ d′

) )
= f

( (
aa′+bc′ ab′+bd′

ca′+dc′ cb′+dd′

) )
=

(
aa′+bc′ ca′+dc′

ab′+bd′ cb′+dd′

)
.

However f
(

( a b
c d )

)
f
( (

a′ b′

c′ d′

) )
= ( a c

b d )
(
a′ c′

b′ d′

)
=

(
aa′+cb′ ac′+cd′

ba′+db′ bc′+dd′

)
. Since these disagree, f

is not a ring homomorphism (and hence not a ring isomorphism). As it happens, f
satisfies all other ring isomorphism properties.


